一种激光纹影仪的光学特性

单子娟 王定兴 李正直

(苏州大学物理系)

提 要

本文采用带有中央相位跃变间隔的光栅作为空间滤波器,并用希尔伯特变换对这种激光纹影仪的光 学特性进行了分析。实验结果与离散希尔伯特变换的计算结果相符。同时给出了应用实例。

激光纹影仪可用于研究不同介质中的光学非均匀性。在等离子体、气体动力学、燃烧过 程的研究中,以及光学元件高级象差和表面质量的检测中,都得到了广泛的运用。它还可以 研究透明溶液和透明固体内弱相位非均匀性。

本文采用相位跃变光栅作为希尔伯特变换滤波器,对激光纹影仪的光学特性进行了分析。为了验证实验结果,还用微处理机计算了离散希尔伯特变换。实验表明,这种激光纹影仪可以在某些工厂和实验室中得到应用。

一、激光纹影仪的基本原理

图1是激光纹影仪的光学系统示意图。其中 8 是 Ho-No 激光器, Po 为针孔滤波器, Le 是扩束透镜, Lo 为准直透镜, L1 是傅氏变换透镜, L2 是逆傅氏变换透镜, P1 是物平面, P2 为放置空间滤波器的频谱面, P3 是象平面。相位跃变光栅与普通光栅的区别在于:它是由 左右两半光栅组合而成, 其光栅常数为 d, 而中央间隔为 d'(如图 2(a) 所示)。对于 d'的中 点而言, 该相位跃变光栅的左右两半的复振幅透射率应具有 m 相位跃变。因此 d' 必须是 d/2 的奇数倍, 它可由下式表示:

$$d' = (2m-1)d/2,$$
 (1)

式中的 m 为正整数,可取 1 或 2。在本装置中,我们采用 $d=20 \mu m$, m=2,则 $d'=30 \mu m$ 的朗奇光栅作为具有中央相位跃变间隔的光栅。如果把相位跃变光栅置于频谱面 P_2 上,且 d' 的中点位于仪器的光轴上。由于实际上我们仅利用该相位跃变光栅的一级衍射,此时该

收稿目词: 1984年1月12日; 收到修改稿日期: 1984年4月5日

光栅的振幅透射率 $G(\omega)$ 等效于相位跃变的余弦光栅的振幅透射率,即为下式所示(参见图 2(b)).

$$G(\omega) = 1 + \cos(\omega x_0) \cdot \operatorname{sgn}(\omega)_{\circ}$$
⁽²⁾

上式中 sgn(ω)是符号函数。

设相位物体的物函数为f(a),该函数的希尔伯特变换定义为^[1]:

$$f_{H}(x) = H[f(x)] = (P/\pi) \int_{-\infty}^{\infty} [f(x')/(x'-x)] dx' = -(P/\pi) (1/x) \otimes f(x)_{\circ}$$
(3)

上式中符号 P 表示积分取柯西主值。f_H(x)的傅氏变换为:

$$F_{H}(\omega) = iF(\omega)\operatorname{sgn}(\omega)_{o} \tag{4}$$

由此可见,如采用复振幅透射率为isgn(ω)的空间滤波器,便可以使物函数f(x)经滤波后, 在象平面上得到f(x)的希尔伯特变换 $f_n(x)$ 。

如果在频谱面 P_2 上置放相位跃变光栅空间滤波器,相位物函数 f(x) 经滤波后,再经 L_2 透镜的逆傅氏变换,那么在象平面 P_3 上复振幅分布将为:

 $f'(x) = \mathscr{F}^{-1}\{F(\omega) \left[1 + \cos \omega x_0 \cdot \operatorname{sgn}(\omega)\right]\}$

$$= f(x) + (1/2)f(x) \otimes g(x) \otimes [\delta(x-x_0) + \delta(x+x_0)]_{\circ}$$
(5)

上式中 g(x) 是符号函数 $sgn(\omega)$ 的逆傅氏变换,它等于 $g(x) = \mathscr{F}^{-1}[sgn(\omega)] = -1/i\pi x_{\circ}$ 由 (3)式定义,(5)式可写成:

$$f'(x) = f(x) + (1/2i)f_H(x)|_{x=x_0} + (1/2i)f_H(x)|_{x=-x_0}$$
(6)

上式中第一项是相位跃变光栅的零级光的复振幅分布,它显示出原物函数f(x),第二、第三项分别表示在 (± 1) 级衍射处,为原物函数f(x)的希尔伯特变换 $f_H(x)$ 。因此,相位跃变光栅滤波器亦可称为希尔伯特变换滤波器,它在 (± 1) 级衍射处亦得到原物函数的希尔伯特变换。

当相位物具有弱相位变化时,相位物的相位分布可转换为象的强度分布。例如,原物是 以空间频率 ω。作余弦变化的弱相位物,且限制物的孔径为 D,那么物函数可写成:

 $f(x) = [\exp(ia \cos \omega_o x)] \operatorname{rect}(x/D) \doteq [1 + ia \cos \omega_o x] \cdot \operatorname{rect}(x/D)$ (a <1)。 (7) 原物函数 f(x) 经希尔伯特变换滤波器滤波后,在一级衍射处的视场中,象的复振幅分布可 写成:

$$f_H(x) = -ia\sin\omega_c x + (1/\pi)\ln|(x - D/2)/(x + D/2)|_{o}$$
(8)

二、相位跃变光栅的光学特性

相位跃变光栅作为希尔伯特变换空间滤波器的优点在于:它的空间滤波作用,不因波长

(9)

改变而产生影响;对于温度与湿度的变化,影响亦不大。与相位刀口^ω相比,目前制造光栅 的技术更为完善。而且,制造相位跃变光栅的中央间隔 d'的误差对象平面上(±1)级的振 幅分布的影响,比相位刀口两半边吸收系数不同所引起的相应误差为小。前者只引起(±1) 级的光强分布中心零点的移动,而后者将使原物函数叠加到其复振幅的希尔伯特变换中去。 下面叙述由于中央间隔 d'的误差对光强分布的影响。现用相位 α 表示实际的间隔 与原 设 计间隔 d' 的差异引起的跃变相位移动量。此时,实际的相位跃变光栅的振幅透射率 G_a(ω) 为

 $G_{\alpha}(\omega) = 1 + \cos \omega x_0 \cdot \cos \alpha \cdot \operatorname{sgn}(\omega) + \sin \omega x_0 \cdot \sin \alpha_0$

那么,在象平面 P₃ 上(见图 1), 振幅分布为:

 $f'(x) = (1/2) \{ f(x) + (1/2i) [\cos \alpha \cdot f_H(x) - \sin \alpha \cdot f(x)]_{x=x_0} \}$

 $+ (1/2i) [\cos \alpha \cdot f_H(x) + \sin \alpha \cdot f(x)]_{x=-x_o}$

由上式可见,在相位跃变光栅零级衍射光中,仍然保留原物函数f(x),而(±1)级衍射光是 原物函数f(x)与它的希尔伯特变换 $f_H(x)$ 的线性组合。当 $\alpha=0$ 时,(9)式过渡到(6)式。相应于(9)式的(+1)级衍射的光强度分布为:

 $I_{a}(x) = |\cos \alpha \cdot f_{H}(x) - \sin \alpha \cdot f(x)|^{2}$

 $=\cos^{2}\alpha |f_{H}(x)|^{2} + \sin^{2}\alpha |f(x)|^{2} - 2\sin\alpha \cdot \cos\alpha \cdot \operatorname{Re}[f(x) \cdot f_{H}^{*}(x)]_{o}$ (10)

下面分析相位跃变光栅的光学特性,以及验证其光学变换的功能。我们采用一种简单 的光路图,用单狭缝或圆孔作为物,而将相位跃变光栅和物一起放置于物平面上,直接在频 谱面(±1)级衍射处观察衍射场的光强分布,如图3所示。图中 L₂ 透镜的作用在于将衍射 图进行放大,以便在 P[']₂ 面上进行观察和测量。此时仍用 f(x)表示物函数,G(x)表示位于 物平面上的相位跃变光栅。那么在频谱面上衍射场的复振幅分布 F'(ω)由下式表示:

 $F'(\omega) = \mathscr{F}\{f(x) \cdot G(x)\} = \mathscr{F}\{f(x) [1 + \cos(\omega_0 x) \cdot \operatorname{sgn}(x)]\}$

 $=F(\omega)-(1/2i)F_{H}(\omega)\big|_{\omega=\omega_{0}}-(1/2i)F_{H}(\omega)\big|_{\omega=-\omega_{0}}$ (11)

对于物为单狭缝时, (11)式第一项表示它在频谱面上零级 衍射场的复振幅分布, 即为 $F(\omega) = \operatorname{sinc}(\omega)$ 。而(11)式中第二、第三项表示在(±1)级衍射处, sinc(ω)的希尔伯特变换 $F_{H}(\omega) = H[\operatorname{sinc}(\omega)]$ 。

如果相位跃变光栅的实际中央间隔与原设计间隔存在误差时,它将引起衍射场振幅分 布的变化。图4中实线曲线表示 sinc(ω)的 离散希尔伯特变换(见下节计算)。虚线曲线 表示 α=0.175 时的离散希尔伯特变换曲线。 与实线曲线相比,虚线曲线的中央零点从0 点移到 δ 点。

一种激光纹影仪的光学特性

883

图 5(a) 是垂直入射平面波经单狭缝和相位跃变光栅后,在频谱面上形成的一级衍射的 光强分布实验照片,图 5(b) 是图 5(a)的光强分布 I(ω)实验曲线。图 5(c)是相应于实验条 件的离散希尔伯特变换曲线。

图 6(a) 是圆孔衍射场的希尔伯特变换光强分布照片。图 6(b)是图 6(a)的一维光强分 布实验曲线。图 6(c) 是相应于实验条件的离散希尔伯特变换曲线。

三、离散希尔伯特变换计算

本文的离散希尔伯特变换是采用下述方法计算^[8]。如原函数 f(x)的离散序列用 f(i) 表示,它的离散希尔伯特变换(DHT)序列用 f_H(k)表示。我们采用微处理机按下列表示式 进行计算^[4]:

$$f_{H}(k) = DHT[f(i)] = \begin{cases} (2/N) \sum_{i \text{ odd}} f(i) \operatorname{ctg}(\pi/N) (k-i), \ (k \oplus \mathfrak{A}), \\ (2/N) \sum f(i) \operatorname{ctg}(\pi/N) (k-i), \ (k \oplus \mathfrak{A}), \end{cases}$$
(12)

进行计算时,对于对称分布函数,以对称点为原点,先把 *x*≥0 的点依次输入,当 *x*≥*N*/2 时, 再把 *x*<0 的数据点输入,其次序是从 -*N*/2 朝原点靠近,最后一个点为靠近原点的最近一 个点。采取一定措施,以减小高频振荡和混叠效应。本文计算了单狭缝衍射、圆孔衍射振幅

10 期

四、激光纹影仪的相位-反差传递函数

在相干光均匀照明下,激光纹影仪将弱相位物的相位变化在象平面上转换为象的强度 变化,可用相位-反差传递函数来表示。对于弱相位物,其弱相位结构的复振幅分布可近似 写为:

$$f(x) \doteq 1 + i\phi(x), \quad |\phi|^2 \ll 1_o$$

空间滤波器一般为复数形式。相位物的频谱经空间滤波器 $G(\omega)$ 滤波后,在象平面形成象的振幅分布为 f'(x),那么象的强度分布可写成:

$$I(x) = f'(x)f'^{*}(x) = \iint_{-\infty}^{\infty} \{\delta(\omega)\delta(\omega')G(\omega)G^{*}(\omega') + \delta(\omega)[-i\Phi^{*}(\omega')]G(\omega)G^{*}(\omega') + \delta(\omega')[i\Phi(\omega)]G(\omega)G^{*}(\omega')\} \cdot \exp[i(\omega - \omega')x]d\omega d\omega'$$
$$= |G(0)|^{2} + \int_{-\infty}^{\infty} [-i\Phi^{*}(\omega')]G(0)G^{*}(\omega')\exp(-i\omega'x)d\omega' + \int_{-\infty}^{\infty} [i\Phi(\omega)]G^{*}(0)G(\omega)\exp(i\omega x)d\omega_{\circ}$$
(13)

由于 $\phi(a)$ 是实函数,即有: $\Phi^*(\omega) = \Phi(-\omega)$,(13)式便可写成:

$$I(x) = |G(0)|^{2} + \int_{-\infty}^{\infty} \Phi(\omega) B(\omega) \exp(i\omega x) d\omega_{\circ}$$
(14)

上式中的 $B(\omega)$ 称为纹影仪的相位-反差传递函数,它决定于空间滤波器 $G(\omega)$,并由下式表示:

$$B(\omega) = i[G^*(0)G(\omega) - G(0)G^*(-\omega)]_{o}$$
(15)

B(ω)表征弱相位物的相位调制转换成强度调制的传递特性。

相位跃变光栅的两半部具有相位相差 π 的作用,相当于一个移相器,可由符号函数 sgn(ω)来表示。根据(15)式,相位跃变光栅的相位-反差传递函数为:

$$B(\omega) = i[(1/2)\operatorname{sgn}(\omega) - (1/2)\operatorname{sgn}(-\omega)] = i\operatorname{sgn}(\omega)_{\circ}$$
(16)

佛科刀口纹影仪^[5]的相位-反差传递函数 $B(\omega)$ 为: $B(\omega) = i[(1/2)H(\omega) - (1/2)H(-\omega)]$ = (i/2)sgn (ω) ,上式中 $H(\omega)$ 是阶跃函数。由此可见,相位跃变光栅与佛科刀口的 $B(\omega)$ 的形式相似,而前者的传递反差优于后者。

五、激光纹影仪的成象反差和灵敏度

为了方便起见,我们用(7)式表示的弱相位物来比较相位跃变光**槽和佛科刀口形成的** 象的反差。对于前者来说,由(8)式可求出视场中心象的强度近 似为: *I*(*x*)=|*f*_H(*x*)|³= *a*² sin² ω_c*x*,那么视场中心象的反差为: 一种激光纹影仪的光学特性。

$$\gamma = (I_{\max} - I_{\min}) / (I_{\max} + I_{\min}) = 1_{o}$$
(17)

885

而一维佛科刀口的 $G(\omega)$ 为 $G(\omega) = (1/2) [1 + sgn(\omega)]$ 。那么相位物 f(x)在象平面上的复 振幅分布为 $f'(x) = (1/2) [f(x) - if_H(x)]$ 。对于由 (7)式表示的弱相位物,在佛科刀口纹影 仪中象的强度分布可近似表示为 $I(x) = (1/4) [1 - 2a \sin \omega_0 x]$ 。而象平面上象的反差为: $\gamma = 2a_0$ (18)

由此可见,对于弱相位物,a≪1,相位跃变光栅纹影仪的反差显然比佛科刀口法大得多。

下面比较前述两种纹影仪检测相位变化的灵敏度。如果令可观察出的最小的象反差为 γ_0 ,视场内的背景光强度为 I_0 ,那么由(8)式可求出相位跃变光栅检测的最小相位变化 $\Delta\phi_0$ (即最小相位振幅 a)为 $\Delta\phi_0 = \sqrt{2I_0\gamma_0/(1-\gamma_0)} = \sqrt{2I_0\gamma_0}$,而在佛科刀口法中,背景光强度 $I_0=1$,因而,由(18)式可看出,它能检测的最小相位变化 $\Delta\phi'_0$ 为 $\Delta\phi'_0 = \gamma_0/2$ 。如果取 $\gamma_0 = 2\%$,且对相位跃变光栅的 I_0 可取 10^{-4} ,那么它的检测相位变化的灵敏度将比佛科刀口法高 5 倍。

六、激光纹影仪的应用实验

我们用图7所示的装置来观察相位物在象平面上的光强度分布。如果在物平面P1上 置放一个矩形孔,也就是说,以均匀照明的矩形 + 20 孔形状的稳定空气作为相位物。图 8(a) 是在 象平面 P3 上所拍摄的实验照片。零级光强分 布相当于原透明物体的象。(±1)级的光强分 布反映出希尔伯特变换的准微分性质。图8(b) L_1 P. La P. 是矩形孔的一维离散希尔伯特变换的模的平方 Pa 图 7 曲线 I(x)。 在集成电路制造过程中,硅片表面平度对成品质量影响很大。图9中(a)、(b)是对质量

在集成电路制造过程中, 硅片表面平度对成品质量影响很大。图 9 中(a)、(b)是对质量 较好的硅片不同部分所拍摄的实验照片。由图表明, 硅片的表面质量还不够理想, 说明该方 法具有较高的检测灵敏度。

- [1] L. M. Soroko; «Holography and Coherent Optics», (Plenum Press, New York, 1980), 474.
- [2] Y. Belvaux, J. C. Vareille; Nouv. Rev. d'optigue appliquee, 1971, 2, No. 3 (May-Jun), 149.
- [3] N. Nakajima, T. Asakura; Optik, 1982, 60, No. 2 (Jan), 181.
 [4] S. C. Kak; Int. J. Electronics, 1973, 34, No. 2 (Feb), 177.
- [5] D. Malacara; «Optical Shop Testing», (John Wiley and Sons, New York, 1978), 247.

Optical characteristics of laser schlieren instrument

SHAN ZIJUAN WANG DINGXING AND LI ZHENZHI (Department of Physics, Suzhou University)

(Received 12 January 1984; revised 5 April 1984)

Abstract

The Ronchi grating bearing 180°-shifting phase is used, in this paper, as a Hilbert transform filter. Some experimental results are presented and the optical characteristics of this kind of laser schlieren instrument are analyzed.